
acmqueue | july-august 2017 1

I
f you’ve read about bitcoin in the press and have some
familiarity with academic research in the field of
cryptography, you might reasonably come away with
the following impression: Several decades’ worth
of research on digital cash, beginning with David

Chaum,10,12 did not lead to commercial success because
it required a centralized, banklike server controlling the
system, and no banks wanted to sign on. Along came
bitcoin, a radically different proposal for a decentralized
cryptocurrency that didn’t need the banks, and digital cash
finally succeeded. Its inventor, the mysterious Satoshi
Nakamoto, was an academic outsider, and bitcoin bears no
resemblance to earlier academic proposals.

This article challenges that view by showing that nearly
all of the technical components of bitcoin originated in
the academic literature of the 1980s and ’90s (see figure
1). This is not to diminish Nakamoto’s achievement but

The concept of
cryptocurrencies
is built from
forgotten ideas
in research literature

ARVIND NARAYANAN AND JEREMY CLARK

1 of 30 TEXT
ONLY

Bitcoin’s Academic
Pedigree

cryptocurrency

acmqueue | july-august 2017 2

2 of 30

1980

1985

1990

1995

2000

2005

2010

2015

smart
contracts

public
keys as

identities

Byzantine
fault

tolerance
proof

of work
digital
cash

Merkle
Tree [33]

Haber &
Stornetta [22]

Haber &
Stornetta [23]

Benaloh &
de Mare [6]

Bayer, Haber,
Stornetta [5]

Ecash [10]

anti-spam[15]

hashcash [2]

Micro-
mint [44]

client
puzzles

[25]

offline
Ecash [32]

DigiCash

Byzantine
Generals [27]

Paxos [28]

PBFT [8]

Paxos made
simple [29]

computational
impostors [1]

Chaum
anonymous

communication
[9]

Chaum
security w/o

identification
[11]

b-money [13]

Bit gold [42]

private
blockchains

Bitcoin [34]

Ethereum

Szabo
essay [41]

Goldberg
disser-
tation [20]

Sybil attack
[14]

Nakamoto concensus

linked
timestamping,
verifiable logs

FIGURE 1: Chronology of key ideas found in Bitcoin

cryptocurrency

acmqueue | july-august 2017 3

to point out that he stood on the shoulders of giants.
Indeed, by tracing the origins of the ideas in bitcoin, we can
zero in on Nakamoto’s true leap of insight—the specific,
complex way in which the underlying components are put
together. This helps explain why bitcoin took so long to be
invented. Readers already familiar with how bitcoin works
may gain a deeper understanding from this historical
presentation. (For an introduction, see Bitcoin and
Cryptocurrency Technologies by Arvind Narayanan et al.36)
Bitcoin’s intellectual history also serves as a case study
demonstrating the relationships among academia, outside
researchers, and practitioners, and offers lessons on how
these groups can benefit from one another.

THE LEDGER
If you have a secure ledger, the process to leverage it into
a digital payment system is straightforward. For example,
if Alice sends Bob $100 by PayPal, then PayPal debits $100
from Alice’s account and credits $100 to Bob’s account.
This is also roughly what happens in traditional banking,
although the absence of a single ledger shared between
banks complicates things.

This idea of a ledger is the starting point for
understanding bitcoin. It is a place to record all
transactions that happen in the system, and it is open to
and trusted by all system participants. Bitcoin converts
this system for recording payments into a currency.
Whereas in banking, an account balance represents cash
that can be demanded from the bank, what does a unit
of bitcoin represent? For now, assume that what is being
transacted holds value inherently.

3 of 30cryptocurrency

acmqueue | july-august 2017 4

How can you build a ledger for use in an environment
like the Internet where participants may not trust each
other? Let’s start with the easy part: the choice of data
structure. There are a few desirable properties. The ledger
should be immutable or, more precisely, append only: you
should be able to add new transactions but not remove,
modify, or reorder existing ones. There should also be
a way to obtain a succinct cryptographic digest of the
state of the ledger at any time. A digest is a short string
that makes it possible to avoid storing the entire ledger,
knowing that if the ledger were tampered with in any way,
the resulting digest would change, and thus the tampering
would be detected. The reason for these properties is that
unlike a regular data structure that’s stored on a single
machine, the ledger is a global data structure collectively
maintained by a mutually untrusting set of participants.
This contrasts with another approach to decentralizing
digital ledgers,7,13,21 in which many participants maintain
local ledgers and it is up to the user querying this set of
ledgers to resolve any conflicts.

Linked timestamping
Bitcoin’s ledger data structure is borrowed, with minimal
modifications, from a series of papers by Stuart Haber and
Scott Stornetta written between 1990 and 1997 (their 1991
paper had another co-author, Dave Bayer). 5, 22,23 We know
this because Nakamoto says so in his bitcoin white paper.34
Haber and Stornetta’s work addressed the problem of
document timestamping—they aimed to build a “digital
notary” service. For patents, business contracts, and other
documents, one may want to establish that the document

4 of 30cryptocurrency

acmqueue | july-august 2017 5

was created at a certain point in time, and no later. Their
notion of document is quite general and could be any type
of data. They do mention, in passing, financial transactions
as a potential application, but it wasn’t their focus.

In a simplified version of Haber and Stornetta’s
proposal, documents are constantly being created and
broadcast. The creator of each document asserts a time
of creation and signs the document, its timestamp, and the
previously broadcast document. This previous document
has signed its own predecessor, so the documents form
a long chain with pointers backwards in time. An outside
user cannot alter a timestamped message since it is signed
by the creator, and the creator cannot alter the message
without also altering the entire chain of messages that
follows. Thus, if you are given a single item in the chain
by a trusted source (e.g., another user or a specialized
timestamping service), the entire chain up to that point
is locked in, immutable, and temporally ordered. Further,
if you assume that the system rejects documents with
incorrect creation times, you can be reasonably assured
that documents are at least as old as they claim to be. At
any rate, bitcoin borrows only the data structure from
Haber and Stornetta’s work and reengineers its security
properties with the addition of the proof-of-work scheme
described later in this article.

In their follow-up papers, Haber and Stornetta
introduced other ideas that make this data structure
more effective and efficient (some of which were hinted
at in their first paper). First, links between documents can
be created using hashes rather than signatures; hashes
are simpler and faster to compute. Such links are called

5 of 30cryptocurrency

acmqueue | july-august 2017 6

hash pointers. Second, instead of threading documents
individually—which might be inefficient if many documents
are created at approximately the same time—they can be
grouped into batches or blocks, with documents in each
block having essentially the same timestamp. Third, within
each block, documents can be linked together with a binary
tree of hash pointers, called a Merkle tree, rather than
a linear chain. Incidentally, Josh Benaloh and Michael de
Mare independently introduced all three of these ideas in
1991,6 soon after Haber and Stornetta’s first paper.

Merkle trees
Bitcoin uses essentially the data structure in Haber and
Stornetta’s 1991 and 1997 papers, shown in simplified form
in figure 2 (Nakamoto was presumably unaware of Benaloh
and de Mare’s work). Of course, in bitcoin, transactions

6 of 30

hash pointersMerkle tree nodes time intervals

FIGURE 2: The ledger data structure in linked timestamping

cryptocurrency

acmqueue | july-august 2017 7

take the place of documents. In each block’s Merkle tree,
the leaf nodes are transactions, and each internal node
essentially consists of two pointers. This data structure
has two important properties. First, the hash of the latest
block acts as a digest. A change to any of the transactions
(leaf nodes) will necessitate changes propagating all the
way to the root of the block, and the roots of all following
blocks. Thus, if you know the latest hash, you can download
the rest of the ledger from an untrusted source and verify
that it hasn’t changed. A similar argument establishes
another important property of the data structure—that
is, someone can efficiently prove to you that a particular
transaction is included in the ledger. This user would
have to send you only a small number of nodes in that
transaction’s block (this is the point of the Merkle tree),
as well as a small amount of information for every
following block. The ability to efficiently prove inclusion
of transactions is highly desirable for performance and
scalability.

Merkle trees, by the way, are named for Ralph Merkle,
a pioneer of asymmetric cryptography who proposed
the idea in his 1980 paper.33 His intended application
was to produce a digest for a public directory of digital
certificates. When a website, for example, presents you
with a certificate, it could also present a short proof that
the certificate appears in the global directory. You could
efficiently verify the proof as long as you know the root
hash of the Merkle tree of the certificates in the directory.
This idea is ancient by cryptographic standards, but its
power has been appreciated only of late. It is at the core
of the recently implemented Certificate Transparency

7 of 30cryptocurrency

acmqueue | july-august 2017 8

system.30 A 2015 paper proposes CONIKS, which applies
the idea to directories of public keys for end-to-end
encrypted emails.32 Efficient verification of parts of the
global state is one of the key functionalities provided by
the ledger in Ethereum, a new cryptocurrency.

Bitcoin may be the most well-known real-world
instantiation of Haber and Stornetta’s data structures, but
it is not the first. At least two companies—Surety starting
in the mid-’90s and Guardtime starting in 2007—offer
document timestamping services. An interesting twist
present in both of these services is an idea mentioned by
Bayer, Haber, and Stornetta,5 which is to publish Merkle
roots periodically in a newspaper by taking out an ad.
Figure 3 shows a Merkle root published by Guardtime.

Byzantine fault tolerance
Of course, the requirements for an Internet currency
without a central authority are more stringent. A
distributed ledger will inevitably have forks, which means
that some nodes will think block A is the latest block, while

8 of 30

FIGURE 3: Guardtime Merkle root published in newspaper (top left)

cryptocurrency

acmqueue | july-august 2017 9

other nodes will think it is block B. This could be because
of an adversary trying to disrupt the ledger’s operation
or simply because of network latency, resulting in blocks
occasionally being generated near-simultaneously by
different nodes unaware of each other’s blocks. Linked
timestamping alone is not enough to resolve forks, as was
shown by Mike Just in 1998.26

A different research field, fault-tolerant distributed
computing, has studied this problem, where it goes by
different names, including state replication. A solution
to this problem is one that enables a set of nodes to
apply the same state transitions in the same order—
typically, the precise order does not matter, only that all
nodes are consistent. For a digital currency, the state
to be replicated is the set of balances, and transactions
are state transitions. Early solutions, including Paxos,
proposed by Turing Award winner Leslie Lamport in
1989,28,29 consider state replication when communication
channels are unreliable and when a minority of nodes
may exhibit certain “realistic” faults, such as going offline
forever or rebooting and sending outdated messages from
when it first went offline. A prolific literature followed
with more adverse settings and efficiency tradeoffs.

A related line of work studied the situation where the
network is mostly reliable (messages are delivered with
bounded delay), but where the definition of “fault” was
expanded to handle any deviation from the protocol.
Such Byzantine faults include both naturally occurring
faults as well as maliciously crafted behaviors. They were
first studied in a paper also by Lamport, cowritten with
Robert Shostak and Marshall Pease, as early as 1982.27

9 of 30cryptocurrency

acmqueue | july-august 2017 10

Much later, in 1999, a landmark paper by Miguel Castro
and Barbara Liskov introduced PBFT (practical Byzantine
fault tolerance), which accommodated both Byzantine
faults and an unreliable network.8 Compared with linked
timestamping, the fault-tolerance literature is enormous
and includes hundreds of variants and optimizations of
Paxos, PBFT, and other seminal protocols.

In his original white paper, Nakamoto does not cite this
literature or use its language. He uses some concepts,
referring to his protocol as a consensus mechanism
and considering faults both in the form of attackers, as
well as nodes joining and leaving the network. This is in
contrast to his explicit reliance on the literature in linked
timestamping (and proof of work, discussed next). When
asked in a mailing-list discussion about bitcoin’s relation to
the Byzantine Generals’ Problem (a thought experiment
requiring BFT to solve), Nakamoto asserts that the proof-
of-work chain solves this problem.35

In the following years, other academics have studied
Nakamoto consensus from the perspective of distributed
systems. This is still a work in progress. Some show
that bitcoin’s properties are quite weak,43 while others
argue that the BFT perspective doesn’t do justice to
bitcoin’s consistency properties.40 Another approach is
to define variants of well-studied properties and prove
that bitcoin satisfies them.19 Recently these definitions
were substantially sharpened to provide a more standard
consistency definition that holds under more realistic
assumptions about message delivery.37 All of this work,
however, makes assumptions about “honest,” i.e., procotol-
compliant, behavior among a subset of participants,

10 of 30cryptocurrency

acmqueue | july-august 2017 11

whereas Nakamoto suggests that honest behavior need
not be blindly assumed, because it is incentivized. A richer
analysis of Nakamoto consensus accounting for the role
of incentives doesn’t fit cleanly into past models of fault-
tolerant systems.

PROOF OF WORK
Virtually all fault-tolerant systems assume that a strict
majority or supermajority (e.g., more than half or two-
thirds) of nodes in the system are both honest and reliable.
In an open peer-to-peer network, there is no registration
of nodes, and they freely join and leave. Thus an adversary
can create enough Sybils, or sockpuppet nodes, to
overcome the consensus guarantees of the system. The
Sybil attack was formalized in 2002 by John Douceur,14 who
turned to a cryptographic construction called proof of
work to mitigate it.

The origins
To understand proof of work, let’s turn to its origins.
The first proposal that would be called proof of work
today was created in 1992 by Cynthia Dwork and Moni
Naor.15 Their goal was to deter spam. Note that spam,
Sybil attacks, and denial of service are all roughly similar
problems in which the adversary amplifies its influence
in the network compared to regular users; proof of work
is applicable as a defense against all three. In Dwork and
Naor’s design, email recipients would process only those
emails that were accompanied by proof that the sender
had performed a moderate amount of computational
work—hence, “proof of work.” Computing the proof would

11 of 30cryptocurrency

acmqueue | july-august 2017 12

take perhaps a few seconds on a regular computer. Thus, it
would pose no difficulty for regular users, but a spammer
wishing to send a million emails would require several
weeks, using equivalent hardware.

Note that the proof-of-work instance (also called a
puzzle) has to be specific to the email, as well as to the
recipient. Otherwise, a spammer would be able to send
multiple messages to the same recipient (or the same
message to multiple recipients) for the cost of one
message to one recipient. The second crucial property
is that it should pose minimal computational burden on
the recipient; puzzle solutions should be trivial to verify,
regardless of how hard they are to compute. Additionally,
Dwork and Naor considered functions with a trapdoor, a
secret known to a central authority that would allow the
authority to solve the puzzles without doing the work.
One possible application of a trapdoor would be for the
authority to approve posting to mailing lists without
incurring a cost. Dwork and Naor’s proposal consisted of
three candidate puzzles meeting their properties, and it
kicked off a whole research field, to which we’ll return.

Hashcash
A very similar idea called hashcash was independently
invented in 1997 by Adam Back, a postdoctoral researcher
at the time who was part of the cypherpunk community.
Cypherpunks were activists who opposed the power of
governments and centralized institutions, and sought to
create social and political change through cryptography.
Back was practically oriented: he released hashcash first
as software,2 and five years later in 2002 released an

12 of 30cryptocurrency

acmqueue | july-august 2017 13

Internet draft (a standardization document) and a paper.4
Hashcash is much simpler than Dwork and Naor’s idea:

it has no trapdoor and no central authority, and it uses only
hash functions instead of digital signatures. It is based on
a simple principle: a hash function behaves as a random
function for some practical purposes, which means that the
only way to find an input that hashes to a particular output is
to try various inputs until one produces the desired output.
Further, the only way to find an input that hashes into an
arbitrary set of outputs is again to try hashing different
inputs one by one. So, if I challenged you to find an input
whose (binary) hash value begins with 10 zeros, you would
have to try numerous inputs, and you would find that each
output had a 1/210 chance of beginning with 10 zeros, which
means that you would have to try on the order of 210 inputs,
or approximately 1,000 hash computations.

As the name suggests, in hashcash Back viewed proof
of work as a form of cash. On his web page he positioned
it as an alternative to David Chaum’s DigiCash, which was
a system that issued untraceable digital cash from a bank
to a user.3 He even made compromises to the technical
design to make it appear more cashlike. Later, Back made
comments suggesting that bitcoin was a straightforward
extension of hashcash. Hashcash is simply not cash,
however, because it has no protection against double
spending. Hashcash tokens cannot be exchanged among
peers.

Meanwhile, in the academic scene, researchers found
many applications for proof of work besides spam, such
as preventing denial-of-service attacks,25 ensuring the
integrity of web analytics,17 and rate-limiting password

13 of 30cryptocurrency

acmqueue | july-august 2017 14

guessing online.38 Incidentally, the term proof of work was
coined only in 1999 in a paper by Markus Jakobsson and
Ari Juels, which also includes a nice survey of the work up
until that point.24 It is worth noting that these researchers
seem to have been unaware of hashcash but independently

started to converge on
hash-based proof of work,
which was introduced in
papers by Eran Gabber
et al.18 and by Juels and
Brainard.25 (Many of the
terms used throughout this
paragraph didn’t become
standard terminology until
long after the papers in
question were published.)

Proof of work and digital
cash: A catch-22
You may know that proof
of work did not succeed
in its original application
as an anti-spam measure.
One possible reason is
the dramatic difference in
the puzzle-solving speed
of different devices. That
means spammers will
be able to make a small
investment in custom
hardware to increase

14 of 30

Sybil-resistant Networks
 In his paper on Sybil attacks, John
 Douceur proposed that all nodes
participating in a BFT protocol be required to solve
hashcash puzzles. If a node were masquerading
as N nodes, it would be unable to solve N puzzles
in time, and the fake identities would be purged.
A malicious node, however, could still obtain a
moderate advantage over an honest node that
claimed only a single identity. A follow-up paper in
20051 suggested that honest nodes should instead
mimic the behavior of malicious nodes and claim
as many virtual identities as they computationally
can afford to claim. With these virtual identities
executing a BFT protocol, the assumption “At
most a fraction f of nodes are faulty” can be
replaced with the assumption “The fraction of
total computational power controlled by faulty
nodes is at most f.” Thus, it is no longer necessary
to validate identities, and open peer-to-peer
networks can run a BFT protocol. Bitcoin uses
exactly this idea. But Nakamoto asks a further
question: What motivates nodes to perform
computationally expensive proof of work? The
answer requires a further leap: digital currency.

3

cryptocurrency

acmqueue | july-august 2017 15

their spam rate by orders of magnitude. In economics, the
natural response to an asymmetry in the cost of production
is trade—that is, a market for proof-of-work solutions. But
this presents a catch-22, because that would require a
working digital currency. Indeed, the lack of such a currency
is a major part of the motivation for proof of work in the
first place. One crude solution to this problem is to declare
puzzle solutions to be cash, as hashcash tries to do.

More coherent approaches to treating puzzle solutions
as cash are found in two essays that preceded bitcoin,
describing ideas called b-money13 and bit gold42 respectively.
These proposals offer timestamping services that sign
off on the creation (through proof of work) of money,
and once money is created, they sign off on transfers. If
disagreement about the ledger occurs among the servers
or nodes, however, there isn’t a clear way to resolve it.
Letting the majority decide seems to be implicit in both
authors’ writings, but because of the Sybil problem, these
mechanisms aren’t very secure, unless there is a gatekeeper
who controls entry into the network or Sybil resistance is
itself achieved with proof of work. (See sidebar).

PUTTING IT ALL TOGETHER
Understanding all these predecessors that contain pieces
of bitcoin’s design leads to an appreciation of the true
genius of Nakamoto’s innovation. In bitcoin, for the first
time, puzzle solutions don’t constitute cash by themselves.
Instead, they are merely used to secure the ledger. Solving
proof of work is performed by specialized entities called
miners (although Nakamoto underestimated just how
specialized mining would become).

15 of 30cryptocurrency

acmqueue | july-august 2017 16

Miners are constantly in a race with each other to
find the next puzzle solution; each miner solves a slightly
different variant of the puzzle so that the chance of
success is proportional to the fraction of global mining
power that the miner controls. A miner who solves a puzzle
gets to contribute the next batch, or block, of transactions
to the ledger, which is based on linked timestamping.
In exchange for the service of maintaining the ledger, a
miner who contributes a block is rewarded with newly
minted units of the currency. With high likelihood, if a
miner contributes an invalid transaction or block, it will be
rejected by the majority of other miners who contribute
the following blocks, and this will also invalidate the
block reward for the bad block. In this way, because of
the monetary incentives, miners ensure each other’s
compliance with the protocol.

Bitcoin neatly avoids the double-spending problem
plaguing proof-of-work-as-cash schemes because it
eschews puzzle solutions themselves having value. In
fact, puzzle solutions are twice decoupled from economic
value: the amount of work required to produce a block is
a floating parameter (proportional to the global mining
power), and further, the number of bitcoins issued per
block is not fixed either. The block reward (which is how
new bitcoins are minted) is set to halve every four years
(in 2017, the reward is 12.5 bitcoins/block, down from 50
bitcoins/block). Bitcoin incorporates an additional reward
scheme—namely, senders of transactions paying miners
for the service of including the transaction in their blocks.
It is expected that the market will determine transaction
fees and miners’ rewards.

16 of 30cryptocurrency

acmqueue | july-august 2017 17

Nakamoto’s genius, then, wasn’t any of the individual
components of bitcoin, but rather the intricate way in
which they fit together to breathe life into the system.
The timestamping and Byzantine agreement researchers
didn’t hit upon the idea of incentivizing nodes to be honest,
nor, until 2005, of using proof of work to do away with
identities. Conversely, the authors of hashcash, b-money,
and bit gold didn’t incorporate the idea of a consensus
algorithm to prevent double spending. In bitcoin, a secure
ledger is necessary to prevent double spending and thus
ensure that the currency has value. A valuable currency
is necessary to reward miners. In turn, strength of mining
power is necessary to secure the ledger. Without it, an
adversary could amass more than 50 percent of the
global mining power and thereby be able to generate
blocks faster than the rest of the network, double-spend
transactions, and effectively rewrite history, overrunning
the system. Thus, bitcoin is bootstrapped, with a circular
dependence among these three components. Nakamoto’s
challenge was not just the design, but also convincing
the initial community of users and miners to take a leap
together into the unknown—back when a pizza cost 10,000
bitcoins and the network’s mining power was less than a
trillionth of what it is today.

Public keys as identities
This article began with the understanding that a secure
ledger makes creating digital currency straightforward.
Let’s revisit this claim. When Alice wishes to pay Bob,
she broadcasts the transaction to all bitcoin nodes. A
transaction is simply a string: a statement encoding Alice’s

17 of 30cryptocurrency

acmqueue | july-august 2017 18

wish to pay Bob some value, signed by her. The eventual
inclusion of this signed statement into the ledger by miners
is what makes the transaction real. Note that this doesn’t
require Bob’s participation in any way. But let’s focus on
what’s not in the transaction: conspicuously absent are
Alice and Bob’s identities; instead, the transaction contains
only their respective public keys. This is an important
concept in bitcoin: public keys are the only kinds of
identities in the system. Transactions transfer value from
and to public keys, which are called addresses.

In order to “speak for” an identity, you must know the
corresponding secret key. You can create a new identity
at any time by generating a new key pair, with no central
authority or registry. You don’t need to obtain a user name
or inform others that you have picked a particular name.
This is the notion of decentralized identity management.
Bitcoin doesn’t specify how Alice tells Bob what her
pseudonym is—that is external to the system.

Although radically different from most other payment
systems today, these ideas are quite old, dating back to
David Chaum, the father of digital cash. In fact, Chaum also
made seminal contributions to anonymity networks, and
it is in this context that he invented this idea. In his 1981
paper, “Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms,”9 he states: “A digital ‘pseudonym’
is a public key used to verify signatures made by the
anonymous holder of the corresponding private key.”

Now, having message recipients be known only by a
public key presents an obvious problem: there is no way
to route the message to the right computer. This leads
to a massive inefficiency in Chaum’s proposal, which

18 of 30cryptocurrency

acmqueue | july-august 2017 19

can be traded off against the level of anonymity but not
eliminated. Bitcoin is similarly exceedingly inefficient
compared with centralized payment systems: the ledger
containing every transaction is maintained by every node
in the system. Bitcoin incurs this inefficiency for security
reasons anyway, and thus achieves pseudonymity (i.e,
public keys as identities) “for free.” Chaum took these ideas
much further in a 1985 paper,11 where he presents a vision
of privacy-preserving e-commerce based on pervasive
pseudonyms, as well as “blind signatures,” the key technical
idea behind his digital cash.

The public-keys-as-identities idea is also seen in b-money
and bit gold, the two precursor essays to bitcoin discussed
earlier. However, much of the work that built on Chaum’s
foundation, as well as Chaum’s own later work on ecash,
moved away from this idea. The cypherpunks were keenly
interested in privacy-preserving communication and
commerce, and they embraced pseudonyms, which they
called nyms. But to them, nyms weren’t mere cryptographic
identities (i.e., public keys), but rather, usually email addresses
that were linked to public keys. Similarly, Ian Goldberg’s
dissertation, which became the basis of much future work
on anonymous communication, recognizes Chaum’s idea but
suggests that nyms should be human-memorable nicknames
with certificates to bind them.20 Thus Bitcoin proved to be the
most successful instantiation of Chaum’s idea.

THE BLOCKCHAIN
So far, this article has not addressed the blockchain,
which, if you believe the hype, is bitcoin’s main invention.
It might come as a surprise to you that Nakamoto doesn’t

19 of 30cryptocurrency

acmqueue | july-august 2017 20

mention that term at all. In fact, the term blockchain has
no standard technical definition but is a loose umbrella
term used by various parties to refer to systems that bear
varying levels of resemblance to bitcoin and its ledger.

Discussing example applications
that benefit from a blockchain will help
clarify the different uses of the term.
First, consider a database backend for
transactions among a consortium of banks,
where transactions are netted at the
end of the day and accounts are settled
by the central bank. Such a system has a
small number of well-identified parties, so
Nakamoto consensus would be overkill.
An on-blockchain currency is not needed
either, as the accounts are denominated in
traditional currency. Linked timestamping,
on the other hand, would clearly be useful,
at least to ensure a consistent global
ordering of transactions in the face of
network latency. State replication would
also be useful: a bank would know that
its local copy of the data is identical to
what the central bank will use to settle
its account. This frees banks from the
expensive reconciliation process they must
currently perform.

Second, consider an asset-management
application such as a registry of documents
that tracks ownership of financial
securities, or real estate, or any other

Smart Contracts
 A smart contract takes
 the idea of putting
data in a secure ledger and
extends it to computation. In
other words, it is a consensus
protocol for the correct
execution of a publicly specified
program. Users can invoke
functions in these smart-
contract programs, subject to
any restrictions specified by
the program, and the function
code is executed in tandem by
the miners. Users can trust the
output without having to redo
the computation and can write
their own programs to act on
the output of other programs.
Smart contracts are especially
powerful when combined with
a cryptocurrency platform,
because the programs in
question can handle money—
own it, transfer it, destroy it,
and, in some cases, even print it.

Bitcoin implements a

3

20 of 30cryptocurrency

acmqueue | july-august 2017 21

asset. Using a blockchain would increase
interoperability and decrease barriers to
entry. We want a secure, global registry
of documents, and ideally one that allows
public participation. This is essentially
what the timestamping services of the
1990s and 2000s sought to provide.
Public blockchains offer a particularly
effective way to achieve this today (the
data itself may be stored off-chain, with
only the metadata stored on-chain).
Other applications also benefit from a
timestamping or “public bulletin board”
abstraction, most notably electronic voting.

Let’s build on the asset-management
example. Suppose you want to execute
trades of assets via the blockchain, and not
merely record them there. This is possible if
the asset is issued digitally on the blockchain
itself, and if the blockchain supports smart
contracts. In this instance, smart contracts
solve the “fair exchange” problem of
ensuring that payment is made if and only
if the asset is transferred. More generally,
smart contracts can encode complex
business logic, provided that all necessary
input data (assets, their prices, and so on) are
represented on the blockchain.

This mapping of blockchain properties
to applications allows us not only to
appreciate their potential, but also to inject

21 of 30cryptocurrency

restrictive programming
language for smart contracts.
A “standard” transaction (i.e.,
one that moves currency from
one address to another) is
specified as a short script in this
language. Ethereum offers a
more permissive and powerful
language.

The idea of smart contracts
was proposed by Nick Szabo in
199441 and so named because
he saw them as analogs of
legal contracts, but with
automated enforcement. (This
view has been critiqued by
Karen Levy31 and Ed Felten.16)
Presciently, Szabo presented
smart contracts as extensions
of digital-cash protocols and
recognized that Byzantine
agreement and digital
signatures (among others) could
be used as building blocks. The
success of cryptocurrencies
has made smart contracts
practical, and research on the
topic has blossomed as well.
For example, programming
languages researchers have
adapted their methods and tools
to automatically discover bugs
in smart contracts and to write
verifiably correct ones.

acmqueue | july-august 2017 22

a much-needed dose of skepticism. First, many proposed
applications of blockchains, especially in banking, don’t use
Nakamoto consensus. Rather, they use the ledger data
structure and Byzantine agreement, which, as shown, date
to the ’90s. This belies the claim that blockchains are a new
and revolutionary technology. Instead, the buzz around
blockchains has helped banks initiate collective action to
deploy shared-ledger technology, like the parable of “stone
soup.” Bitcoin has also served as a highly visible proof of
concept that the decentralized ledger works, and the
Bitcoin Core project has provided a convenient code base
that can be adapted as necessary.

Second, blockchains are frequently presented as more
secure than traditional registries—a misleading claim. To
see why, the overall stability of the system or platform
must be separated from endpoint security—that is, the
security of users and devices. True, the systemic risk of
blockchains may be lower than that of many centralized
institutions, but the endpoint-security risk of blockchains
is far worse than the corresponding risk of traditional
institutions. Blockchain transactions are near-instant,
irreversible, and, in public blockchains, anonymous by
design. With a blockchain-based stock registry, if a user (or
broker or agent) loses control of his or her private keys—
which takes nothing more than losing a phone or getting
malware on a computer—the user loses his or her assets.
The extraordinary history of bitcoin hacks, thefts, and
scams doesn’t inspire much confidence—according to one
estimate, at least six percent of bitcoins in circulation have
been stolen at least once.39

22 of 30cryptocurrency

acmqueue | july-august 2017 23

CONCLUDING LESSONS
The history described here offers rich (and
complementary) lessons for practitioners and academics.
Practitioners should be skeptical of claims of revolutionary

technology. As shown
here, most of the ideas
in bitcoin that have
generated excitement in
the enterprise, such as
distributed ledgers and
Byzantine agreement,
actually date back
20 years or more.
Recognize that your
problem may not require
any breakthroughs—
there may be long-
forgotten solutions in
research papers.

Academia seems
to have the opposite
problem, at least in this
instance: a resistance to
radical, extrinsic ideas.
The bitcoin white paper,
despite the pedigree of
many of its ideas, was
more novel than most
academic research.
Moreover, Nakamoto
didn’t care for academic

Permissioned Blockchains
 While this article has emphasized that
 private or permissioned blockchains
omit most of bitcoin’s innovations, this isn’t meant
to diminish the interesting work happening in
this space. A permissioned blockchain places
restrictions on who can join the network, write
transactions, or mine blocks. In particular, if
miners are restricted to a list of trustworthy
participants, the proof of work can be dropped in
favor of a more traditional BFT approach. Thus,
much of the research is a rebirth of BFT that
asks questions such as: Can we use hash trees
to simplify consensus algorithms? What if the
network can fail only in certain ways?

Further, there are important considerations
around identity and public-key infrastructure,
access control, and confidentiality of the data
stored on the blockchain. These issues largely
don’t arise in public blockchain settings, nor are
they studied in the traditional BFT literature.

Finally, there is also the engineering work
of scaling blockchains for high throughput and
adapting them to various applications such
as supply-chain management and financial
technology.

3

23 of 30cryptocurrency

acmqueue | july-august 2017 24

peer review and didn’t fully connect it to its history. As a
result, academics essentially ignored bitcoin for several
years. Many academic communities informally argued
that Bitcoin couldn’t work, based on theoretical models or
experiences with past systems, despite the fact that it was
working in practice.

We’ve seen repeatedly that ideas in the research
literature can be gradually forgotten or lie unappreciated,
especially if they are ahead of their time, even in popular
areas of research. Both practitioners and academics
would do well to revisit old ideas to glean insights for
present systems. Bitcoin was unusual and successful not
because it was on the cutting edge of research on any of its
components, but because it combined old ideas from many
previously unrelated fields. This is not easy to do, as it
requires bridging disparate terminology, assumptions, etc.,
but it is a valuable blueprint for innovation.

Practitioners would benefit from being able to identify
overhyped technology. Some indicators of hype: difficulty
identifying the technical innovation; difficulty pinning
down the meaning of supposedly technical terms, because
of companies eager to attach their own products to the
bandwagon; difficulty identifying the problem that is being
solved; and finally, claims of technology solving social
problems or creating economic/political upheaval.

In contrast, academia has difficulty selling its inventions.
For example, it’s unfortunate that the original proof-
of-work researchers get no credit for bitcoin, possibly
because the work wasn’t well known outside academic
circles. Activities such as releasing code and working with
practitioners are not adequately rewarded in academia.

24 of 30cryptocurrency

acmqueue | july-august 2017 25

In fact, the original branch of the academic proof-of-work
literature continues today without acknowledging the
existence of bitcoin! Engaging with the real world not only
helps get credit, but will also reduce reinvention and is a
source of fresh ideas.

Acknowledgements
The authors are grateful to Adam Back, Andrew Miller,
Edward Felten, Harry Kalodner, Ian Goldberg, Ian Grigg,
Joseph Bonneau, Malte Möser, Mike Just, Neha Narula,
Steven Goldfeder, and Stuart Haber for valuable feedback
on a draft.

References
1. Aspnes, J., et al. 2005. Exposing computationally

challenged Byzantine imposters. Yale University
Department of Computer Science; http://cs.yale.edu/
publications/techreports/tr1332.pdf.

2. Back, A. 1997. A partial hash collision based postage
scheme; http://www.hashcash.org/papers/announce.txt.

3. Back, A. 2001. Hash cash; https://web.archive.org/
web/20010614013848/http://cypherspace.org/
hashcash/.

4. Back, A. 2002. Hashcash—a denial of service counter
measure; http://www.hashcash.org/papers/hashcash.pdf.

5. Bayer, D., Haber, S., Stornetta, W. S. Improving the
efficiency and reliability of digital time-stamping.
Proceedings of Sequences 1991; https://link.springer.com/
chapter/10.1007/978-1-4613-9323-8_24.

6. Benaloh, J., de Mare, M. 1991. Efficient broadcast
timestamping; http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.38.9199.

25 of 30cryptocurrency

http://cs.yale.edu/publications/techreports/tr1332.pdf
http://cs.yale.edu/publications/techreports/tr1332.pdf

acmqueue | july-august 2017 26

7. Boyle, T. F. 1997. GLT and GLR: Component architecture
for general ledgers; https://linas.org/mirrors/www.
gldialtone.com/2001.07.14/GLT-GLR.htm.

8. Castro, M., Liskov, B. 1999. Practical Byzantine fault
tolerance. Proceedings of the Third Symposium on
Operating Systems Design and Implementation; http://
pmg.csail.mit.edu/papers/osdi99.pdf.

9. Chaum, D. 1981. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM 24(2): 84-90; https://dl.acm.org/citation.
cfm?id=358563.

10. Chaum, D. 1983. Blind signatures for untraceable
payments. Advances in Cryptology: 199-203.

11. Chaum, D. 1985. Security without identification:
transaction systems to make Big Brother obsolete.
Communications of the ACM 28(10): 1030-1044; https://
dl.acm.org/citation.cfm?id=4373.

12. Chaum, D., et al. 1988. Untraceable electronic cash.
Advances in Cryptology: 319-327; https://dl.acm.org/
citation.cfm?id=88969.

13. Dai, W. 1998; http://www.weidai.com/bmoney.txt.
14. Douceur, J. R. 2002. The Sybil attack; https://dl.acm.org/

citation.cfm?id=687813.
15. Dwork, C., Naor, M. 1992. Pricing via processing or

combatting junk mail; https://dl.acm.org/citation.
cfm?id=705669.

16. Felten, E. 2017. Smart contracts: neither smart nor
contracts? Freedom to Tinker; https://freedom-to-tinker.
com/2017/02/20/smart-contracts-neither-smart-not-
contracts/.

17. Franklin, M. K., Malkhi, D. 1997. Auditable metering and

26 of 30cryptocurrency

https://freedom-to-tinker.com/2017/02/20/smart-contracts-neither-smart-not-contracts/
https://freedom-to-tinker.com/2017/02/20/smart-contracts-neither-smart-not-contracts/
https://freedom-to-tinker.com/2017/02/20/smart-contracts-neither-smart-not-contracts/

acmqueue | july-august 2017 27

lightweight security; http://www.hashcash.org/papers/
auditable-metering.pdf.

18. Gabber, E., et al. 1998. Curbing Junk E-Mail via Secure
Classiffication. http://www.hashcash.org/papers/
secure-classification.pdf.

19. Garay, J. A., et al. 2015. The bitcoin backbone protocol:
analysis and applications. Advances in Cryptology: 281-
310; https://eprint.iacr.org/2014/765.pdf.

20. Goldberg, I. 2000. A pseudonymous communications
infrastructure for the Internet. Ph.D. dissertation,
University of California Berkeley; http://moria.
freehaven.net/anonbib/cache/ian-thesis.pdf.

21. Grigg, I. 2005. Triple entry accounting; http://iang.org/
papers/triple_entry.html.

22. Haber, S., Stornetta, W. S. 1991. How to timestamp
a digital document. Advances in Cryptology-
CRYPT0’ 90 3(2): 99-111; https://link.springer.com/
chapter/10.1007/3-540-38424-3_32.

23. Haber, S., Stornetta, W. S. 1997. Secure names for bit-
strings. In Proceedings of the 4th ACM Conference on
Computer and Communications Security: 28-35; http://
dl.acm.org/citation.cfm?id=266430.

24. Jakobsson, M., Juels, A. 1999. Proofs of work and bread
pudding protocols; http://www.hashcash.org/papers/
bread-pudding.pdf.

25. Juels, A., Brainard, J. 1999. Client puzzles: a cryptographic
countermeasure against connection completion attacks.
Proceedings of Networks and Distributed Security
Systems: 151-165; https://www.isoc.org/isoc/conferences/
ndss/99/proceedings/papers/juels.pdf.

26. Just, M. 1998. Some timestamping protocol failures;

27 of 30cryptocurrency

http://iang.org/papers/triple_entry.html
http://iang.org/papers/triple_entry.html

acmqueue | july-august 2017 28

http://www.isoc.org/isoc/conferences/ndss/98/just.pdf.
27. Lamport, L., et al. 1982. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and
Systems 4(3): 382-401; https://dl.acm.org/citation. cfm?
id=357176 .

28. Lamport, L. 1989. The part-time parliament. Digital
Equipment Corporation; https://computerarchive.org/
files/mirror/www.bitsavers.org/pdf/dec/tech_reports/
SRC-RR-49.pdf.

29. Lamport, L. 2001. Paxos made simple; http://lamport.
azurewebsites.net/pubs/paxos-simple.pdf.

30. Laurie, B. 2014. Certificate Transparency. acmqueue
12(8); https://queue.acm.org/detail.cfm?id=2668154.

31. Levy, K. E. C. 2017. Book-smart, not street-smart:
blockchain-based smart contracts and the social
workings of law. Engaging Science, Technology, and
Society 3: 1-15; http://estsjournal.org/article/view/107.

32. Melara, M., et al. 2015. CONIKS: bringing key
transparency to end users. Proceedings of the 24th
Usenix Security Symposium; https://www.usenix.org/
system/files/conference/usenixsecurity15/sec15-paper-
melara.pdf.

33. Merkle, R. C. 1980. Protocols for public key
cryptosystems. IEEE Symposium on Security and
Privacy; http://www.merkle.com/papers/Protocols.pdf.

34. Nakamoto, S. 2008. Bitcoin: a peer-to-peer electronic
cash system; https://bitcoin.org/bitcoin.pdf.

35. Nakamoto, S. 2008. Re: Bitcoin P2P e-cash paper; http://
satoshi.nakamotoinstitute.org/emails/cryptography/11/.

36. Narayanan, A., et al. 2016. Bitcoin and Cryptocurrency

28 of 30cryptocurrency

http://www.isoc.org/isoc/conferences/ndss/98/just.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf

acmqueue | july-august 2017 29

Technologies. Princeton University Press; http://
bitcoinbook.cs.princeton.edu/.

37. Pass, R., et al. 2017. Analysis of the blockchain protocol
in asynchronous networks. Annual International
Conference on the Theory and Applications of
Cryptographic Techniques; https://link.springer.com/
chapter/10.1007/978-3-319-56614-6_22.

38. Pinkas, B., Sander, T. 2002. Securing passwords against
dictionary attacks. Proceedings of the Ninth ACM
Conference on Computer and Communications Security:
161-170; https://dl.acm.org/citation.cfm?id=586133.

39. Reuters. 2014. Mind your wallet: why the underworld
loves bitcoin; http://www.cnbc.com/2014/03/14/mind-
your-wallet-why-the-underworld-loves-bitcoin.html.

40. Sirer, E. G. 2016. Bitcoin guarantees strong, not
eventual, consistency. Hacking, Distributed; http://
hackingdistributed.com/2016/03/01/bitcoin-guarantees-
strong-not-eventual-consistency/.

41. Szabo, N. 1994. Smart contracts; http://www.fon.hum.
uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/
smart.contracts.html.

42. Szabo, N. 2008. Bit gold. Unenumerated; https://
unenumerated.blogspot.com/2005/12/bit-gold.html.

43. Wattenhofer, R. 2016. The Science of the Blockchain.
Inverted Forest Publishing.

44. Rivest, R. L., Shamir, A. 1996. PayWord and MicroMint:
Two simple micropayment schemes. International
Workshop on Security Protocols.

29 of 30cryptocurrency

acmqueue | july-august 2017 30

Arvind Narayanan is an assistant professor of computer
science at Princeton. He leads the Princeton Web Transparency
and Accountability Project to uncover how companies collect
and use our personal information. Narayanan also leads
a research team investigating the security, anonymity, and
stability of cryptocurrencies, as well as novel applications
of blockchains. He co-created a massive open online course,
and a textbook on bitcoin and cryptocurrency technologies.
His doctoral research showed the fundamental limits of de-
identification, for which he received the Privacy Enhancing
Technologies Award. Narayanan is an affiliated faculty member
at the Center for Information Technology Policy at Princeton
and an affiliate scholar at Stanford Law School’s Center
for Internet and Society. You can follow him on Twitter at
@random_walker.

Jeremy Clark is an assistant professor at the Concordia Institute
for Information Systems Engineering. He obtained his Ph.D. from
the University of Waterloo, where his gold medal dissertation
was on designing and deploying secure voting systems, including
Scantegrity—the first cryptographically verifiable system used in
a public-sector election. He wrote one of the earliest academic
papers on bitcoin, completed several research projects in the
area, and contributed to the first textbook. Beyond research, he
has worked with several municipalities on voting technology and
testified to the Canadian Senate on bitcoin. You can follow him
on Twitter at @PulpSpy.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

30 of 30cryptocurrency

CONTENTS2

