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I
f you’ve read about bitcoin in the press and have some 
familiarity with academic research in the field of 
cryptography, you might reasonably come away with 
the following impression: Several decades’ worth 
of research on digital cash, beginning with David 

Chaum,10,12 did not lead to commercial success because 
it required a centralized, banklike server controlling the 
system, and no banks wanted to sign on. Along came 
bitcoin, a radically different proposal for a decentralized 
cryptocurrency that didn’t need the banks, and digital cash 
finally succeeded. Its inventor, the mysterious Satoshi 
Nakamoto, was an academic outsider, and bitcoin bears no 
resemblance to earlier academic proposals.

This article challenges that view by showing that nearly 
all of the technical components of bitcoin originated in 
the academic literature of the 1980s and ’90s (see figure 
1). This is not to diminish Nakamoto’s achievement but 
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to point out that he stood on the shoulders of giants. 
Indeed, by tracing the origins of the ideas in bitcoin, we can 
zero in on Nakamoto’s true leap of insight—the specific, 
complex way in which the underlying components are put 
together. This helps explain why bitcoin took so long to be 
invented. Readers already familiar with how bitcoin works 
may gain a deeper understanding from this historical 
presentation. (For an introduction, see Bitcoin and 
Cryptocurrency Technologies by Arvind Narayanan et al.36) 
Bitcoin’s intellectual history also serves as a case study 
demonstrating the relationships among academia, outside 
researchers, and practitioners, and offers lessons on how 
these groups can benefit from one another.

THE LEDGER
If you have a secure ledger, the process to leverage it into 
a digital payment system is straightforward. For example, 
if Alice sends Bob $100 by PayPal, then PayPal debits $100 
from Alice’s account and credits $100 to Bob’s account. 
This is also roughly what happens in traditional banking, 
although the absence of a single ledger shared between 
banks complicates things. 

This idea of a ledger is the starting point for 
understanding bitcoin. It is a place to record all 
transactions that happen in the system, and it is open to 
and trusted by all system participants. Bitcoin converts 
this system for recording payments into a currency. 
Whereas in banking, an account balance represents cash 
that can be demanded from the bank, what does a unit 
of bitcoin represent? For now, assume that what is being 
transacted holds value inherently.
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How can you build a ledger for use in an environment 
like the Internet where participants may not trust each 
other? Let’s start with the easy part: the choice of data 
structure. There are a few desirable properties. The ledger 
should be immutable or, more precisely, append only: you 
should be able to add new transactions but not remove, 
modify, or reorder existing ones. There should also be 
a way to obtain a succinct cryptographic digest of the 
state of the ledger at any time. A digest is a short string 
that makes it possible to avoid storing the entire ledger, 
knowing that if the ledger were tampered with in any way, 
the resulting digest would change, and thus the tampering 
would be detected. The reason for these properties is that 
unlike a regular data structure that’s stored on a single 
machine, the ledger is a global data structure collectively 
maintained by a mutually untrusting set of participants. 
This contrasts with another approach to decentralizing 
digital ledgers,7,13,21 in which many participants maintain 
local ledgers and it is up to the user querying this set of 
ledgers to resolve any conflicts.

Linked timestamping
Bitcoin’s ledger data structure is borrowed, with minimal 
modifications, from a series of papers by Stuart Haber and 
Scott Stornetta written between 1990 and 1997 (their 1991 
paper had another co-author, Dave Bayer). 5, 22,23 We know 
this because Nakamoto says so in his bitcoin white paper.34 
Haber and Stornetta’s work addressed the problem of 
document timestamping—they aimed to build a “digital 
notary” service. For patents, business contracts, and other 
documents, one may want to establish that the document 
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was created at a certain point in time, and no later. Their 
notion of document is quite general and could be any type 
of data. They do mention, in passing, financial transactions 
as a potential application, but it wasn’t their focus.

In a simplified version of Haber and Stornetta’s 
proposal, documents are constantly being created and 
broadcast. The creator of each document asserts a time 
of creation and signs the document, its timestamp, and the 
previously broadcast document. This previous document 
has signed its own predecessor, so the documents form 
a long chain with pointers backwards in time. An outside 
user cannot alter a timestamped message since it is signed 
by the creator, and the creator cannot alter the message 
without also altering the entire chain of messages that 
follows. Thus, if you are given a single item in the chain 
by a trusted source (e.g., another user or a specialized 
timestamping service), the entire chain up to that point 
is locked in, immutable, and temporally ordered. Further, 
if you assume that the system rejects documents with 
incorrect creation times, you can be reasonably assured 
that documents are at least as old as they claim to be. At 
any rate, bitcoin borrows only the data structure from 
Haber and Stornetta’s work and reengineers its security 
properties with the addition of the proof-of-work scheme 
described later in this article. 

In their follow-up papers, Haber and Stornetta 
introduced other ideas that make this data structure 
more effective and efficient (some of which were hinted 
at in their first paper). First, links between documents can 
be created using hashes rather than signatures; hashes 
are simpler and faster to compute. Such links are called 
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hash pointers. Second, instead of threading documents 
individually—which might be inefficient if many documents 
are created at approximately the same time—they can be 
grouped into batches or blocks, with documents in each 
block having essentially the same timestamp. Third, within 
each block, documents can be linked together with a binary 
tree of hash pointers, called a Merkle tree, rather than 
a linear chain. Incidentally, Josh Benaloh and Michael de 
Mare independently introduced all three of these ideas in 
1991,6 soon after Haber and Stornetta’s first paper.

Merkle trees
Bitcoin uses essentially the data structure in Haber and
Stornetta’s 1991 and 1997 papers, shown in simplified form 
in figure 2 (Nakamoto was presumably unaware of Benaloh 
and de Mare’s work). Of course, in bitcoin, transactions 
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take the place of documents. In each block’s Merkle tree, 
the leaf nodes are transactions, and each internal node 
essentially consists of two pointers. This data structure 
has two important properties. First, the hash of the latest 
block acts as a digest. A change to any of the transactions 
(leaf nodes) will necessitate changes propagating all the 
way to the root of the block, and the roots of all following 
blocks. Thus, if you know the latest hash, you can download 
the rest of the ledger from an untrusted source and verify 
that it hasn’t changed. A similar argument establishes 
another important property of the data structure—that 
is, someone can efficiently prove to you that a particular 
transaction is included in the ledger. This user would 
have to send you only a small number of nodes in that 
transaction’s block (this is the point of the Merkle tree), 
as well as a small amount of information for every 
following block. The ability to efficiently prove inclusion 
of transactions is highly desirable for performance and 
scalability.

Merkle trees, by the way, are named for Ralph Merkle, 
a pioneer of asymmetric cryptography who proposed 
the idea in his 1980 paper.33 His intended application 
was to produce a digest for a public directory of digital 
certificates. When a website, for example, presents you 
with a certificate, it could also present a short proof that 
the certificate appears in the global directory. You could 
efficiently verify the proof as long as you know the root 
hash of the Merkle tree of the certificates in the directory. 
This idea is ancient by cryptographic standards, but its 
power has been appreciated only of late. It is at the core 
of the recently implemented Certificate Transparency 
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system.30 A 2015 paper proposes CONIKS, which applies 
the idea to directories of public keys for end-to-end 
encrypted emails.32 Efficient verification of parts of the 
global state is one of the key functionalities provided by 
the ledger in Ethereum, a new cryptocurrency.

Bitcoin may be the most well-known real-world 
instantiation of Haber and Stornetta’s data structures, but 
it is not the first. At least two companies—Surety starting 
in the mid-’90s and Guardtime starting in 2007—offer 
document timestamping services. An interesting twist 
present in both of these services is an idea mentioned by 
Bayer, Haber, and Stornetta,5 which is to publish Merkle 
roots periodically in a newspaper by taking out an ad. 
Figure 3 shows a Merkle root published by Guardtime.

Byzantine fault tolerance
Of course, the requirements for an Internet currency 
without a central authority are more stringent. A 
distributed ledger will inevitably have forks, which means 
that some nodes will think block A is the latest block, while 

8 of 30

FIGURE 3: Guardtime Merkle root published in newspaper (top left) 

cryptocurrency



acmqueue | july-august 2017   9

other nodes will think it is block B. This could be because 
of an adversary trying to disrupt the ledger’s operation 
or simply because of network latency, resulting in blocks 
occasionally being generated near-simultaneously by 
different nodes unaware of each other’s blocks. Linked 
timestamping alone is not enough to resolve forks, as was 
shown by Mike Just in 1998.26

A different research field, fault-tolerant distributed 
computing, has studied this problem, where it goes by 
different names, including state replication. A solution 
to this problem is one that enables a set of nodes to 
apply the same state transitions in the same order—
typically, the precise order does not matter, only that all 
nodes are consistent. For a digital currency, the state 
to be replicated is the set of balances, and transactions 
are state transitions. Early solutions, including Paxos, 
proposed by Turing Award winner Leslie Lamport in 
1989,28,29 consider state replication when communication 
channels are unreliable and when a minority of nodes 
may exhibit certain “realistic” faults, such as going offline 
forever or rebooting and sending outdated messages from 
when it first went offline. A prolific literature followed 
with more adverse settings and efficiency tradeoffs.

A related line of work studied the situation where the 
network is mostly reliable (messages are delivered with 
bounded delay), but where the definition of “fault” was 
expanded to handle any deviation from the protocol. 
Such Byzantine faults include both naturally occurring 
faults as well as maliciously crafted behaviors. They were 
first studied in a paper also by Lamport, cowritten with 
Robert Shostak and Marshall Pease, as early as 1982.27 
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Much later, in 1999, a landmark paper by Miguel Castro 
and Barbara Liskov introduced PBFT (practical Byzantine 
fault tolerance), which accommodated both Byzantine 
faults and an unreliable network.8 Compared with linked 
timestamping, the fault-tolerance literature is enormous 
and includes hundreds of variants and optimizations of 
Paxos, PBFT, and other seminal protocols.

In his original white paper, Nakamoto does not cite this 
literature or use its language. He uses some concepts, 
referring to his protocol as a consensus mechanism 
and considering faults both in the form of attackers, as 
well as nodes joining and leaving the network. This is in 
contrast to his explicit reliance on the literature in linked 
timestamping (and proof of work, discussed next). When 
asked in a mailing-list discussion about bitcoin’s relation to 
the Byzantine Generals’ Problem (a thought experiment 
requiring BFT to solve), Nakamoto asserts that the proof-
of-work chain solves this problem.35

In the following years, other academics have studied 
Nakamoto consensus from the perspective of distributed 
systems. This is still a work in progress. Some show 
that bitcoin’s properties are quite weak,43 while others 
argue that the BFT perspective doesn’t do justice to 
bitcoin’s consistency properties.40 Another approach is 
to define variants of well-studied properties and prove 
that bitcoin satisfies them.19 Recently these definitions 
were substantially sharpened to provide a more standard 
consistency definition that holds under more realistic 
assumptions about message delivery.37 All of this work, 
however, makes assumptions about “honest,” i.e., procotol-
compliant, behavior among a subset of participants, 
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whereas Nakamoto suggests that honest behavior need 
not be blindly assumed, because it is incentivized. A richer 
analysis of Nakamoto consensus accounting for the role 
of incentives doesn’t fit cleanly into past models of fault-
tolerant systems.

PROOF OF WORK
Virtually all fault-tolerant systems assume that a strict 
majority or supermajority (e.g., more than half or two-
thirds) of nodes in the system are both honest and reliable. 
In an open peer-to-peer network, there is no registration 
of nodes, and they freely join and leave. Thus an adversary 
can create enough Sybils, or sockpuppet nodes, to 
overcome the consensus guarantees of the system. The 
Sybil attack was formalized in 2002 by John Douceur,14 who 
turned to a cryptographic construction called proof of 
work to mitigate it.

The origins
To understand proof of work, let’s turn to its origins. 
The first proposal that would be called proof of work 
today was created in 1992 by Cynthia Dwork and Moni 
Naor.15 Their goal was to deter spam. Note that spam, 
Sybil attacks, and denial of service are all roughly similar 
problems in which the adversary amplifies its influence 
in the network compared to regular users; proof of work 
is applicable as a defense against all three. In Dwork and 
Naor’s design, email recipients would process only those 
emails that were accompanied by proof that the sender 
had performed a moderate amount of computational 
work—hence, “proof of work.” Computing the proof would 
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take perhaps a few seconds on a regular computer. Thus, it 
would pose no difficulty for regular users, but a spammer 
wishing to send a million emails would require several 
weeks, using equivalent hardware. 

Note that the proof-of-work instance (also called a 
puzzle) has to be specific to the email, as well as to the 
recipient. Otherwise, a spammer would be able to send 
multiple messages to the same recipient (or the same 
message to multiple recipients) for the cost of one 
message to one recipient. The second crucial property 
is that it should pose minimal computational burden on 
the recipient; puzzle solutions should be trivial to verify, 
regardless of how hard they are to compute. Additionally, 
Dwork and Naor considered functions with a trapdoor, a 
secret known to a central authority that would allow the 
authority to solve the puzzles without doing the work. 
One possible application of a trapdoor would be for the 
authority to approve posting to mailing lists without 
incurring a cost. Dwork and Naor’s proposal consisted of 
three candidate puzzles meeting their properties, and it 
kicked off a whole research field, to which we’ll return. 

Hashcash
A very similar idea called hashcash was independently 
invented in 1997 by Adam Back, a postdoctoral researcher 
at the time who was part of the cypherpunk community. 
Cypherpunks were activists who opposed the power of 
governments and centralized institutions, and sought to 
create social and political change through cryptography. 
Back was practically oriented: he released hashcash first 
as software,2 and five years later in 2002 released an 
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Internet draft (a standardization document) and a paper.4 
Hashcash is much simpler than Dwork and Naor’s idea: 

it has no trapdoor and no central authority, and it uses only 
hash functions instead of digital signatures. It is based on 
a simple principle: a hash function behaves as a random 
function for some practical purposes, which means that the 
only way to find an input that hashes to a particular output is 
to try various inputs until one produces the desired output. 
Further, the only way to find an input that hashes into an 
arbitrary set of outputs is again to try hashing different 
inputs one by one. So, if I challenged you to find an input 
whose (binary) hash value begins with 10 zeros, you would 
have to try numerous inputs, and you would find that each 
output had a 1/210 chance of beginning with 10 zeros, which 
means that you would have to try on the order of 210 inputs, 
or approximately 1,000 hash computations. 

As the name suggests, in hashcash Back viewed proof 
of work as a form of cash. On his web page he positioned 
it as an alternative to David Chaum’s DigiCash, which was 
a system that issued untraceable digital cash from a bank 
to a user.3 He even made compromises to the technical 
design to make it appear more cashlike. Later, Back made 
comments suggesting that bitcoin was a straightforward 
extension of hashcash. Hashcash is simply not cash, 
however, because it has no protection against double 
spending. Hashcash tokens cannot be exchanged among 
peers. 

Meanwhile, in the academic scene, researchers found 
many applications for proof of work besides spam, such 
as preventing denial-of-service attacks,25 ensuring the 
integrity of web analytics,17 and rate-limiting password 
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guessing online.38 Incidentally, the term proof of work was 
coined only in 1999 in a paper by Markus Jakobsson and 
Ari Juels, which also includes a nice survey of the work up 
until that point.24 It is worth noting that these researchers 
seem to have been unaware of hashcash but independently 

started to converge on 
hash-based proof of work, 
which was introduced in 
papers by Eran Gabber 
et al.18 and by Juels and 
Brainard.25 (Many of the 
terms used throughout this 
paragraph didn’t become 
standard terminology until 
long after the papers in 
question were published.)

Proof of work and digital 
cash: A catch-22
You may know that proof 
of work did not succeed 
in its original application 
as an anti-spam measure. 
One possible reason is 
the dramatic difference in 
the puzzle-solving speed 
of different devices. That 
means spammers will 
be able to make a small 
investment in custom 
hardware to increase 
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Sybil-resistant Networks 
 In his paper on Sybil attacks, John
 Douceur proposed that all nodes 
participating in a BFT protocol be required to solve 
hashcash puzzles. If a node were masquerading 
as N nodes, it would be unable to solve N puzzles 
in time, and the fake identities would be purged. 
A malicious node, however, could still obtain a 
moderate advantage over an honest node that 
claimed only a single identity. A follow-up paper in 
20051 suggested that honest nodes should instead 
mimic the behavior of malicious nodes and claim 
as many virtual identities as they computationally 
can afford to claim. With these virtual identities 
executing a BFT protocol, the assumption “At 
most a fraction f of nodes are faulty” can be 
replaced with the assumption “The fraction of 
total computational power controlled by faulty 
nodes is at most f.” Thus, it is no longer necessary 
to validate identities, and open peer-to-peer 
networks can run a BFT protocol. Bitcoin uses 
exactly this idea. But Nakamoto asks a further 
question: What motivates nodes to perform 
computationally expensive proof of work? The 
answer requires a further leap: digital currency.
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their spam rate by orders of magnitude. In economics, the 
natural response to an asymmetry in the cost of production 
is trade—that is, a market for proof-of-work solutions. But 
this presents a catch-22, because that would require a 
working digital currency. Indeed, the lack of such a currency 
is a major part of the motivation for proof of work in the 
first place. One crude solution to this problem is to declare 
puzzle solutions to be cash, as hashcash tries to do.

More coherent approaches to treating puzzle solutions 
as cash are found in two essays that preceded bitcoin, 
describing ideas called b-money13 and bit gold42 respectively. 
These proposals offer timestamping services that sign 
off on the creation (through proof of work) of money, 
and once money is created, they sign off on transfers. If 
disagreement about the ledger occurs among the servers 
or nodes, however, there isn’t a clear way to resolve it. 
Letting the majority decide seems to be implicit in both 
authors’ writings, but because of the Sybil problem, these 
mechanisms aren’t very secure, unless there is a gatekeeper 
who controls entry into the network or Sybil resistance is 
itself achieved with proof of work. (See sidebar).

PUTTING IT ALL TOGETHER 
Understanding all these predecessors that contain pieces 
of bitcoin’s design leads to an appreciation of the true 
genius of Nakamoto’s innovation. In bitcoin, for the first 
time, puzzle solutions don’t constitute cash by themselves. 
Instead, they are merely used to secure the ledger. Solving 
proof of work is performed by specialized entities called 
miners (although Nakamoto underestimated just how 
specialized mining would become). 
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Miners are constantly in a race with each other to 
find the next puzzle solution; each miner solves a slightly 
different variant of the puzzle so that the chance of 
success is proportional to the fraction of global mining 
power that the miner controls. A miner who solves a puzzle 
gets to contribute the next batch, or block, of transactions 
to the ledger, which is based on linked timestamping. 
In exchange for the service of maintaining the ledger, a 
miner who contributes a block is rewarded with newly 
minted units of the currency. With high likelihood, if a 
miner contributes an invalid transaction or block, it will be 
rejected by the majority of other miners who contribute 
the following blocks, and this will also invalidate the 
block reward for the bad block. In this way, because of 
the monetary incentives, miners ensure each other’s 
compliance with the protocol.

Bitcoin neatly avoids the double-spending problem 
plaguing proof-of-work-as-cash schemes because it 
eschews puzzle solutions themselves having value. In 
fact, puzzle solutions are twice decoupled from economic 
value: the amount of work required to produce a block is 
a floating parameter (proportional to the global mining 
power), and further, the number of bitcoins issued per 
block is not fixed either. The block reward (which is how 
new bitcoins are minted) is set to halve every four years 
(in 2017, the reward is 12.5 bitcoins/block, down from 50 
bitcoins/block). Bitcoin incorporates an additional reward 
scheme—namely, senders of transactions paying miners 
for the service of including the transaction in their blocks. 
It is expected that the market will determine transaction 
fees and miners’ rewards.
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Nakamoto’s genius, then, wasn’t any of the individual 
components of bitcoin, but rather the intricate way in 
which they fit together to breathe life into the system. 
The timestamping and Byzantine agreement researchers 
didn’t hit upon the idea of incentivizing nodes to be honest, 
nor, until 2005, of using proof of work to do away with 
identities. Conversely, the authors of hashcash, b-money, 
and bit gold didn’t incorporate the idea of a consensus 
algorithm to prevent double spending. In bitcoin, a secure 
ledger is necessary to prevent double spending and thus 
ensure that the currency has value. A valuable currency 
is necessary to reward miners. In turn, strength of mining 
power is necessary to secure the ledger. Without it, an 
adversary could amass more than 50 percent of the 
global mining power and thereby be able to generate 
blocks faster than the rest of the network, double-spend 
transactions, and effectively rewrite history, overrunning 
the system. Thus, bitcoin is bootstrapped, with a circular 
dependence among these three components. Nakamoto’s 
challenge was not just the design, but also convincing 
the initial community of users and miners to take a leap 
together into the unknown—back when a pizza cost 10,000 
bitcoins and the network’s mining power was less than a 
trillionth of what it is today.

Public keys as identities
This article began with the understanding that a secure 
ledger makes creating digital currency straightforward. 
Let’s revisit this claim. When Alice wishes to pay Bob, 
she broadcasts the transaction to all bitcoin nodes. A 
transaction is simply a string: a statement encoding Alice’s 
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wish to pay Bob some value, signed by her. The eventual 
inclusion of this signed statement into the ledger by miners 
is what makes the transaction real. Note that this doesn’t 
require Bob’s participation in any way. But let’s focus on 
what’s not in the transaction: conspicuously absent are 
Alice and Bob’s identities; instead, the transaction contains 
only their respective public keys. This is an important 
concept in bitcoin: public keys are the only kinds of 
identities in the system. Transactions transfer value from 
and to public keys, which are called addresses.

In order to “speak for” an identity, you must know the 
corresponding secret key. You can create a new identity 
at any time by generating a new key pair, with no central 
authority or registry. You don’t need to obtain a user name 
or inform others that you have picked a particular name. 
This is the notion of decentralized identity management. 
Bitcoin doesn’t specify how Alice tells Bob what her 
pseudonym is—that is external to the system. 

Although radically different from most other payment 
systems today, these ideas are quite old, dating back to 
David Chaum, the father of digital cash. In fact, Chaum also 
made seminal contributions to anonymity networks, and 
it is in this context that he invented this idea. In his 1981 
paper, “Untraceable Electronic Mail, Return Addresses, 
and Digital Pseudonyms,”9 he states: “A digital ‘pseudonym’ 
is a public key used to verify signatures made by the 
anonymous holder of the corresponding private key.” 

Now, having message recipients be known only by a 
public key presents an obvious problem: there is no way 
to route the message to the right computer. This leads 
to a massive inefficiency in Chaum’s proposal, which 
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can be traded off against the level of anonymity but not 
eliminated. Bitcoin is similarly exceedingly inefficient 
compared with centralized payment systems: the ledger 
containing every transaction is maintained by every node 
in the system. Bitcoin incurs this inefficiency for security 
reasons anyway, and thus achieves pseudonymity (i.e, 
public keys as identities) “for free.” Chaum took these ideas 
much further in a 1985 paper,11 where he presents a vision 
of privacy-preserving e-commerce based on pervasive 
pseudonyms, as well as “blind signatures,” the key technical 
idea behind his digital cash.

The public-keys-as-identities idea is also seen in b-money 
and bit gold, the two precursor essays to bitcoin discussed 
earlier. However, much of the work that built on Chaum’s 
foundation, as well as Chaum’s own later work on ecash, 
moved away from this idea. The cypherpunks were keenly 
interested in privacy-preserving communication and 
commerce, and they embraced pseudonyms, which they 
called nyms. But to them, nyms weren’t mere cryptographic 
identities (i.e., public keys), but rather, usually email addresses 
that were linked to public keys. Similarly, Ian Goldberg’s 
dissertation, which became the basis of much future work 
on anonymous communication, recognizes Chaum’s idea but 
suggests that nyms should be human-memorable nicknames 
with certificates to bind them.20 Thus Bitcoin proved to be the 
most successful instantiation of Chaum’s idea.

THE BLOCKCHAIN
So far, this article has not addressed the blockchain, 
which, if you believe the hype, is bitcoin’s main invention. 
It might come as a surprise to you that Nakamoto doesn’t 
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mention that term at all. In fact, the term blockchain has 
no standard technical definition but is a loose umbrella 
term used by various parties to refer to systems that bear 
varying levels of resemblance to bitcoin and its ledger. 

Discussing example applications 
that benefit from a blockchain will help 
clarify the different uses of the term. 
First, consider a database backend for 
transactions among a consortium of banks, 
where transactions are netted at the 
end of the day and accounts are settled 
by the central bank. Such a system has a 
small number of well-identified parties, so 
Nakamoto consensus would be overkill. 
An on-blockchain currency is not needed 
either, as the accounts are denominated in 
traditional currency. Linked timestamping, 
on the other hand, would clearly be useful, 
at least to ensure a consistent global 
ordering of transactions in the face of 
network latency. State replication would 
also be useful: a bank would know that 
its local copy of the data is identical to 
what the central bank will use to settle 
its account. This frees banks from the 
expensive reconciliation process they must 
currently perform. 

Second, consider an asset-management 
application such as a registry of documents 
that tracks ownership of financial 
securities, or real estate, or any other 

Smart Contracts 
 A smart contract takes
  the idea of putting 
data in a secure ledger and 
extends it to computation. In 
other words, it is a consensus 
protocol for the correct 
execution of a publicly specified 
program. Users can invoke 
functions in these smart-
contract programs, subject to 
any restrictions specified by 
the program, and the function 
code is executed in tandem by 
the miners. Users can trust the 
output without having to redo 
the computation and can write 
their own programs to act on 
the output of other programs. 
Smart contracts are especially 
powerful when combined with 
a cryptocurrency platform, 
because the programs in 
question can handle money—
own it, transfer it, destroy it, 
and, in some cases, even print it. 

Bitcoin implements a 
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asset. Using a blockchain would increase 
interoperability and decrease barriers to 
entry. We want a secure, global registry 
of documents, and ideally one that allows 
public participation. This is essentially 
what the timestamping services of the 
1990s and 2000s sought to provide. 
Public blockchains offer a particularly 
effective way to achieve this today (the 
data itself may be stored off-chain, with 
only the metadata stored on-chain). 
Other applications also benefit from a 
timestamping or “public bulletin board” 
abstraction, most notably electronic voting.

Let’s build on the asset-management 
example. Suppose you want to execute 
trades of assets via the blockchain, and not 
merely record them there. This is possible if 
the asset is issued digitally on the blockchain 
itself, and if the blockchain supports smart 
contracts. In this instance, smart contracts 
solve the “fair exchange” problem of 
ensuring that payment is made if and only 
if the asset is transferred. More generally, 
smart contracts can encode complex 
business logic, provided that all necessary 
input data (assets, their prices, and so on) are 
represented on the blockchain.

This mapping of blockchain properties 
to applications allows us not only to 
appreciate their potential, but also to inject 
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restrictive programming 
language for smart contracts. 
A “standard” transaction (i.e., 
one that moves currency from 
one address to another) is 
specified as a short script in this 
language. Ethereum offers a 
more permissive and powerful 
language. 

The idea of smart contracts 
was proposed by Nick Szabo in 
199441 and so named because 
he saw them as analogs of 
legal contracts, but with 
automated enforcement. (This 
view has been critiqued by 
Karen Levy31 and Ed Felten.16) 
Presciently, Szabo presented 
smart contracts as extensions 
of digital-cash protocols and 
recognized that Byzantine 
agreement and digital 
signatures (among others) could 
be used as building blocks. The 
success of cryptocurrencies 
has made smart contracts 
practical, and research on the 
topic has blossomed as well. 
For example, programming 
languages researchers have 
adapted their methods and tools 
to automatically discover bugs 
in smart contracts and to write 
verifiably correct ones.
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a much-needed dose of skepticism. First, many proposed 
applications of blockchains, especially in banking, don’t use 
Nakamoto consensus. Rather, they use the ledger data 
structure and Byzantine agreement, which, as shown, date 
to the ’90s. This belies the claim that blockchains are a new 
and revolutionary technology. Instead, the buzz around 
blockchains has helped banks initiate collective action to 
deploy shared-ledger technology, like the parable of “stone 
soup.” Bitcoin has also served as a highly visible proof of 
concept that the decentralized ledger works, and the 
Bitcoin Core project has provided a convenient code base 
that can be adapted as necessary.

Second, blockchains are frequently presented as more 
secure than traditional registries—a misleading claim. To 
see why, the overall stability of the system or platform 
must be separated from endpoint security—that is, the 
security of users and devices. True, the systemic risk of 
blockchains may be lower than that of many centralized 
institutions, but the endpoint-security risk of blockchains 
is far worse than the corresponding risk of traditional 
institutions. Blockchain transactions are near-instant, 
irreversible, and, in public blockchains, anonymous by 
design. With a blockchain-based stock registry, if a user (or 
broker or agent) loses control of his or her private keys—
which takes nothing more than losing a phone or getting 
malware on a computer—the user loses his or her assets. 
The extraordinary history of bitcoin hacks, thefts, and 
scams doesn’t inspire much confidence—according to one 
estimate, at least six percent of bitcoins in circulation have 
been stolen at least once.39
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CONCLUDING LESSONS
The history described here offers rich (and 
complementary) lessons for practitioners and academics. 
Practitioners should be skeptical of claims of revolutionary 

technology. As shown 
here, most of the ideas 
in bitcoin that have 
generated excitement in 
the enterprise, such as 
distributed ledgers and 
Byzantine agreement, 
actually date back 
20 years or more. 
Recognize that your 
problem may not require 
any breakthroughs—
there may be long-
forgotten solutions in 
research papers. 

Academia seems 
to have the opposite 
problem, at least in this 
instance: a resistance to 
radical, extrinsic ideas. 
The bitcoin white paper, 
despite the pedigree of 
many of its ideas, was 
more novel than most 
academic research. 
Moreover, Nakamoto 
didn’t care for academic 

Permissioned Blockchains 
 While this article has emphasized that
  private or permissioned blockchains 
omit most of bitcoin’s innovations, this isn’t meant 
to diminish the interesting work happening in 
this space. A permissioned blockchain places 
restrictions on who can join the network, write 
transactions, or mine blocks. In particular, if 
miners are restricted to a list of trustworthy 
participants, the proof of work can be dropped in 
favor of a more traditional BFT approach. Thus, 
much of the research is a rebirth of BFT that 
asks questions such as: Can we use hash trees 
to simplify consensus algorithms? What if the 
network can fail only in certain ways? 

Further, there are important considerations 
around identity and public-key infrastructure, 
access control, and confidentiality of the data 
stored on the blockchain. These issues largely 
don’t arise in public blockchain settings, nor are 
they studied in the traditional BFT literature. 

Finally, there is also the engineering work 
of scaling blockchains for high throughput and 
adapting them to various applications such 
as supply-chain management and financial 
technology. 

3
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peer review and didn’t fully connect it to its history. As a 
result, academics essentially ignored bitcoin for several 
years. Many academic communities informally argued 
that Bitcoin couldn’t work, based on theoretical models or 
experiences with past systems, despite the fact that it was 
working in practice. 

We’ve seen repeatedly that ideas in the research 
literature can be gradually forgotten or lie unappreciated, 
especially if they are ahead of their time, even in popular 
areas of research. Both practitioners and academics 
would do well to revisit old ideas to glean insights for 
present systems. Bitcoin was unusual and successful not 
because it was on the cutting edge of research on any of its 
components, but because it combined old ideas from many 
previously unrelated fields. This is not easy to do, as it 
requires bridging disparate terminology, assumptions, etc., 
but it is a valuable blueprint for innovation.

Practitioners would benefit from being able to identify 
overhyped technology. Some indicators of hype: difficulty 
identifying the technical innovation; difficulty pinning 
down the meaning of supposedly technical terms, because 
of companies eager to attach their own products to the 
bandwagon; difficulty identifying the problem that is being 
solved; and finally, claims of technology solving social 
problems or creating economic/political upheaval.

In contrast, academia has difficulty selling its inventions. 
For example, it’s unfortunate that the original proof-
of-work researchers get no credit for bitcoin, possibly 
because the work wasn’t well known outside academic 
circles. Activities such as releasing code and working with 
practitioners are not adequately rewarded in academia. 
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In fact, the original branch of the academic proof-of-work 
literature continues today without acknowledging the 
existence of bitcoin! Engaging with the real world not only 
helps get credit, but will also reduce reinvention and is a 
source of fresh ideas.
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